Synaptic Plasticity After Chemical Deafening and Electrical Stimulation of the Auditory Nerve in Cats

D.K. Ryugo,1,2* C.A. Baker,1 K.L. Montey,1,3 L.Y. Chang,1 A. Coco,4 J.B. Fallon,4,5 and R.K. Shepherd4,5
1Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
2Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
3Department of Biology, University of Maryland, College Park, Maryland 20742
4The Bionic Ear Institute, Melbourne, Victoria 3002, Australia
5Department of Otolaryngology, University of Melbourne, Victoria 3002, Australia

ABSTRACT

The effects of deafness on brain structure and function have been studied using animal models of congenital deafness that include surgical ablation of the organ of Corti, acoustic trauma, ototoxic drugs, and hereditary deafness. This report describes the morphologic plasticity of auditory nerve synapses in response to ototoxic deafening and chronic electrical stimulation of the auditory nerve. Normal kittens were deafened by neonatal administration of neomycin that eliminated auditory receptor cells. Some of these cats were raised deaf, whereas others were chronically implanted with cochlear electrodes at 2 months of age and electrically stimulated for up to 12 months. The large endings of the auditory nerve, endbulbs of Held, were studied because they hold a key position in the timing pathway for sound localization, are readily identifiable, and exhibit deafness-associated abnormalities. Compared with those of normal hearing cats, synapses of ototoxically deafened cats displayed expanded postsynaptic densities, a 35.4% decrease in synaptic vesicle (SV) density, and a reduction in the somatic size of spherical bushy cells (SBCs). In comparison with normal hearing cats, ototoxically deafened cats that received cochlear stimulation had endbulbs that expressed postsynaptic densities (PSDs) that were statistically identical in size, showed a 48.1% reduction in SV density, and whose target SBCs had a 25.5% reduction in soma area. These results demonstrate that electrical stimulation via a cochlear implant in chemically deafened cats preserves PSD size but not other aspects of synapse morphology. This determination further suggests that the effects of ototoxic deafness are not identical to those of hereditary deafness. J. Comp. Neurol. 518: 1046 –1063, 2010.

INDEXING TERMS: cochlear implant; deafness; electrical stimulation; endbulb of Held; ototoxicity

It is well known that sound stimulation has an important role in the structural and functional development of the central auditory system. The importance of auditory stimulation is especially manifest in the developing animal; deprivation early in the postnatal period produces severe abnormalities in the auditory pathways, whereas, in mature animals with previous auditory experience, these effects are diminished (Powell and Erulkar, 1962; Webster, 1983a,b; Rubel and Parks, 1988; Shepherd et al., 2006). These observations have been associated with the age-related benefits of cochlear implantation in congenitally deaf humans (Quittner and Steck, 1991; Waltzman et al., 1991; Gantz et al., 1994) because younger children typically gain more benefit from a cochlear implant than older children. These data imply that deafness causes change in the central nervous system that, if not corrected, interferes with implant effectiveness.

Cochlear implants bypass the nonfunctioning hair cell receptors of the inner ear by directly stimulating the auditory nerve. The auditory nerve delivers this information to the cochlear nucleus, which in turn distributes outgoing messages to higher centers. This circumstance makes the synaptic relationships between auditory nerve fibers and cochlear nucleus neurons key to central auditory process-
ing. It is in this context that we have chosen to study endbulbs of Held, the large axosomatic endings of auditory nerve fibers that initiate a pathway to process binaural timing cues.

In the congenitally deaf white cat, pathologic changes initiated at the organ of Corti continued transsynaptically along the auditory pathways, including synaptic abnormalities in auditory nerve endings (Ryugo et al., 1997, 1998) and somatic shrinkage at higher centers (West and Harrison, 1973; Schwartz and Higa, 1982). Moreover, there was physiological evidence for pathology in the intrinsic microcircuity of auditory cortex (Kral et al., 2006). Our working hypothesis was that the failure of auditory nerve synapses to convey spike activity to the central auditory pathways mediated these central effects. A corollary to this idea is that a reintroduction of activity in the auditory nerve by surgically placing unilateral cochlear implants into congenitally deaf cats would repair the system (Kretzmer et al., 2004). In fact, electrical stimulation of the cochlea in deaf white cats was shown to restore the morphology of auditory nerve synapses in the cochlear nucleus (Ryugo et al., 2005) and to recruit neural responses in auditory cortex that more resembled those in normal hearing cats (Klinke et al., 1999).

The striking corrective effects of electrical stimulation on deaf white cats prompted us to ask whether these plastic changes in the brains of genetically deaf cats represented common features that could be observed in other models of acquired congenital deafness. In one well-established model, deafness is produced by the administration of ototoxic drugs to newborn normal hearing kittens. These drugs include aminoglycoside antibiotics (e.g., amikacin, neomycin, and kanamycin), salicylates, antineoplastics (cisplatin), and diuretics (ethacrynic acid and furosemide) and are known to cause loss of hair cell receptors during the onset of normal hearing (Hawkins, 1973; Leake and Hradek, 1988; Lustig et al., 1994; Shepherd and Hardie, 2001). Because the mechanisms underlying ototoxic deafness and hereditary deafness are undoubtedly different, we sought to determine how synapses of auditory nerve fibers responded to ototoxic deafness and to the restoration of its activity by electrical stimulation of the cochlea.

MATERIALS AND METHODS

Subjects

Normal hearing cats were purchased from a licensed vendor (The Biological Research Centre, Department of Otolaryngology, University of Melbourne, Melbourne, Australia) and bred in the laboratory. Cats from individual litters were raised together but assigned to one of three cohorts: normal controls, deafened, and deafened and electrically stimulated. Animals were weaned at 8 weeks. All live animal procedures were approved by and conducted under the auspices of the Animal Research Ethics Committee, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.

Deafening procedure

Neomycin (60 mg/kg SC; Sigma, St. Louis, MO) was administered daily (for a minimum of 17 days) beginning on postnatal day 1 (Leake et al., 1999). Hearing status was assessed by recording click-evoked auditory brainstem responses (ABRs) at postnatal day 17. Cats with no evidence of an ABR to a 98-dB peak equivalent SPL click were considered profoundly deaf and received no further neomycin administration. Neomycin administration was continued in animals with a recordable ABR, and their hearing was tested every 3–4 days until they had no response. The duration of the neomycin administration for each animal is listed in Table 1, and there was no difference in duration of the deafening protocol for the deaf vs. deaf/stimulated groups (Mann-Whitney rank sum test, P > 0.09).

ABRs

ABRs were recorded in an electrically isolated, sound-attenuated Faraday room. The animals were premedicated with xylazine (2 mg/kg, SC), and then sedated with ketamine (20 mg/kg, IM). During recording, the animal’s temperature was maintained at 37°C ± 1°C. Computer-generated 100-μsec rarefaction clicks were presented from a loudspeaker placed 10 cm from the pinna. The contralateral external ear canal was plugged with an earmould compound (Otoplastik, Unna, Germany). ABRs were recorded differentially using SC stainless-steel electrodes (vertex positive, neck negative, and thorax ground). The stimuli were presented at a rate of 33 per second. The responses were amplified by a factor of 10^5 and filtered through a bandpass filter (high pass 150 Hz, 24 dB/octave; low pass 3 kHz, 6 dB/octave). The output of the amplifier was fed to a 10-bit AD converter and sampled at 20 kHz for a period of 12.5 msec following stimulus onset. Five hundred responses were averaged and stored for subsequent automated computer analysis, performed with Igor Pro (WaveMetrics, Portland, OR) using custom-written analysis procedures. Two recordings were made at each stimulus level. An attenuator was used to reduce the intensity of the acoustic stimulus to determine threshold, which was defined as the minimum stimulus required to produce a wave IV (approximately 4.0–4.5 msec latency relative to the stimulus onset) amplitude of at least 0.2 μV in two repeated recordings.
Electrical ABRs

Electrically evoked ABRs (EABRs) were recorded differentially as in the ABR procedure described above. Optically isolated biphasic current pulses (100 μsec per phase, 50 μsec interphase gap) were generated under computer control and delivered to a pair of electrodes on the intracochlear electrode array. Responses were recorded using the same techniques as described for the ABR except for the inclusion of a sample-and-hold circuit in order to remove electrical artifact (Black et al., 1983). Two recordings were made at each current level, and current amplitude was reduced to levels below threshold. Threshold was defined as the smallest current level required to evoke a peak-trough response amplitude of at least 0.2 μV for wave IV of the EABR (within a latency window of 2.4–2.9 msec following stimulus onset) for both responses. These recording procedures were similar to those previously published (Coco et al., 2007).

Stimulation methods

Each animal that was to receive chronic electrical stimulation was unilaterally implanted at 8 weeks of age with an intracochlear electrode array and lead-wire assembly using previously published techniques (Coco et al., 2007). The electrode arrays contained eight platinum electrodes with surface areas of approximately 0.42 mm² and were inserted approximately 8 mm into the scala tympani via a small incision in the round window. This insertion depth placed the most apical electrode at the ~10-kHz position in the cochlea and the most basal electrode at the 26-kHz position (Brown et al., 1992). Fourteen days following implant surgery a chronic electrical stimulation program commenced using Nucleus CI24 cochlear implants in combination with Nucleus ESPrit 3G behind-the-ear speech processors (Cochlear Ltd.). Implantation and stimulation turn-on was delayed until this age to allow the animals to recover fully from the deafening procedure, and stimulation from this age has been shown to be early enough to produce significant functional change (see, e.g., Fallon et al., 2009).

The implant electrodes were connected to a percutaneous lead-wire system and carried in a harness worn by the animals to allow continuous stimulation without confining their daily activities. Each animal’s processor was programmed to deliver stimulation at levels between 3 dB below the EABR threshold and 6 dB above the EABR threshold (i.e., T-level = 3 dB below EABR threshold and C-level = 6 dB above EABR threshold). These levels were confirmed to be well tolerated by the animals, and all animals exhibited orienting responses, including head and pinna movements to their acoustic environment, which included sounds associated with the normal running of an

<table>
<thead>
<tr>
<th>Animal ID</th>
<th>Status</th>
<th>Sex</th>
<th>Electrode pairs</th>
<th>Age at death (months)</th>
<th>Stimulus duration (weeks)</th>
<th>No. EBs</th>
<th>PSD size (nM² ± SD)</th>
<th>SV density (SVs/μm² ± SD)</th>
<th>SGN density (cells/μm² ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05_943</td>
<td>Normal hearing</td>
<td>F</td>
<td>Normal hearing</td>
<td>11.0</td>
<td>10</td>
<td>0.109 ± 0.05 n = 54</td>
<td>75.62 ± 15.1</td>
<td>797.55 ± 224.5</td>
<td></td>
</tr>
<tr>
<td>05_947</td>
<td>Normal hearing</td>
<td>F</td>
<td>Normal hearing</td>
<td>8.0</td>
<td>5</td>
<td>0.065 ± 0.03 n = 27</td>
<td>69.21 ± 16.7</td>
<td>954.40 ± 264.1</td>
<td></td>
</tr>
<tr>
<td>05_949</td>
<td>Normal hearing</td>
<td>F</td>
<td>Normal hearing</td>
<td>13.0</td>
<td>5</td>
<td>0.118 ± 0.08 n = 26</td>
<td>77.18 ± 22.0</td>
<td>916.96 ± 208.2</td>
<td></td>
</tr>
<tr>
<td>04_929</td>
<td>Profoundly deaf</td>
<td>M</td>
<td>1/2 and 6/7</td>
<td>4.6</td>
<td>10</td>
<td>0.156 ± 0.08 n = 39</td>
<td>28.61 ± 11.4</td>
<td>329.50 ± 111.4</td>
<td></td>
</tr>
<tr>
<td>04_934</td>
<td>Profoundly deaf</td>
<td>M</td>
<td>cg 1, cg 2</td>
<td>11.7</td>
<td>3</td>
<td>0.124 ± 0.11 n = 28</td>
<td>42.99 ± 10.9</td>
<td>259.14 ± 98.1</td>
<td></td>
</tr>
<tr>
<td>04_935</td>
<td>Profoundly deaf</td>
<td>M</td>
<td>cg 1, cg 3</td>
<td>9.6</td>
<td>10</td>
<td>0.115 ± 0.12 n = 35</td>
<td>43.93 ± 22.5</td>
<td>255.51 ± 70.1</td>
<td></td>
</tr>
<tr>
<td>04_937</td>
<td>Profoundly deaf</td>
<td>F</td>
<td>cg 1, cg 2</td>
<td>14.0</td>
<td>3</td>
<td>0.145 ± 0.15 n = 12</td>
<td>26.17 ± 13.5</td>
<td>65.95 ± 32.5</td>
<td></td>
</tr>
<tr>
<td>04_938</td>
<td>Profoundly deaf</td>
<td>M</td>
<td>1/2 and 2,6,7,8</td>
<td>7.4</td>
<td>8</td>
<td>0.152 ± 0.02 n = 53</td>
<td>46.77 ± 16.1</td>
<td>154.60 ± 99.8</td>
<td></td>
</tr>
<tr>
<td>03_924</td>
<td>Profoundly deaf</td>
<td>F</td>
<td>1/2 and 24</td>
<td>10.3</td>
<td>8</td>
<td>0.170 ± 0.16 n = 45</td>
<td>15.39 ± 11.6</td>
<td>127.88 ± 63.2</td>
<td></td>
</tr>
<tr>
<td>03_925</td>
<td>Profoundly deaf</td>
<td>M</td>
<td>1/2 and 21</td>
<td>10.3</td>
<td>12</td>
<td>0.117 ± 0.07 n = 52</td>
<td>69.64 ± 14.0</td>
<td>202.19 ± 116.6</td>
<td></td>
</tr>
<tr>
<td>04_932</td>
<td>Profoundly deaf</td>
<td>F</td>
<td>1/2 and 21</td>
<td>7.9</td>
<td>7</td>
<td>0.188 ± 0.27 n = 87</td>
<td>46.49 ± 12.7</td>
<td>200.96 ± 101.7</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Photomicrographs of histological sections of a representative cochlea from each cohort of cats. Low-magnification micrographs taken through the basal turn (left column) and high magnification micrographs taken through Rosenthal’s canal (right column) of normal, deaf, and deaf-stimulated animals, respectively. In normal hearing animals, the organ of Corti is intact (A), and there is a full complement of spiral ganglion cells (A'). Hair cells are completely absent in the cochleae of deafened animals (B,C). Deaf (B') and deaf-stimulated (C') animals exhibit a striking loss of ganglion cells. Scale bars = 250 μm in C (applies to A–C); 25 μm in C' (applies to A'–C').
Figure 2.
animal research facility. Additionally, it was confirmed that both self-vocalizations and vocalizations by other animals housed in the facility produced changes in the stimulus levels that were within the perceivable range for each animal. The output of the stimulator delivered 100-μsec/phase charge-balanced biphasic current pulses to electrodes in either bipolar or common ground configuration (see Table 1) at a stimulus rate of 500 pulses per second per electrode. The maximum stimulus current amplitudes used in this study were in the range 200–500 μA at 100 μsec/phase, which produced charge densities of 4.8–11.9 μC/cm². Stimulated animals received stimulation 24 hours per day, 7 days per week, and their battery supply was checked and maintained daily.

Histologic procedures

Animals were administered a lethal dose of sodium pentobarbital (65 mg/kg, IV) and, when areflexic to corneal stimulation, were perfused through the heart with 25 cc of 0.1 M phosphate-buffered isotonic saline with 0.5% NaNO₂ (pH 7.4), followed immediately by 2 liters of a 0.1 M phosphate-buffered solution containing 2% paraformaldehyde and 2% glutaraldehyde. After perfusion, subjects were decapitated, and the head was immersed in the same fixative (5°C) with just enough bone removed to expose the brainstem and cochlear nuclei to fixative. The cochleae were harvested (see below). On the next day, the brains were dissected from the skull and the cochlear nuclei dissected and embedded in a gelatin-albumin mixture hardened with glutaraldehyde. The tissue block was sectioned in the coronal plane (50–75 μm thickness) on a Viatome. Sections were collected in serial order and separated into two series, one for light microscopy and one for electron microscopy. Those sections for electron microscopic observation were placed in 1% OsO₄ for 15 minutes, rinsed in buffer, bloc stained in 1% uranyl acetate, rinsed, and stained with cresyl violet for light microscopic examination. The cochleae were then placed in the same fixative solution overnight. The cochleae were decalcified (10% EDTA in 10% neutral buffered formalin), dehydrated, embedded in Spurr’s resin, serially sectioned at a thickness of 2 μm through the midmodiolar region, and stained with hematoxylin and eosin (H&E).

Cochlear preparation

Immediately after the transcardial perfusion, the cochleae were dissected from the skull and the oval and round window membranes were incised under microscopic observation. The cochleae were then placed in the same fixative solution overnight. The cochleae were decalcified (10% EDTA in 10% neutral buffered formalin), dehydrated, embedded in Spurr’s resin, serially sectioned at a thickness of 2 μm through the midmodiolar region, and stained with hematoxylin and eosin (H&E).

Data analysis

Spiral ganglion neuron (SGN) density was measured by a single observer blind to the experimental group. For each midmodiolar section (n = 6 per cat), the basal cochlear turn was identified, and the cross-sectional area of Rosenthal’s canal was measured in NIH Image (http://rsb.info.nih.gov/nih-image/). Neurons within Rosenthal’s canal with a clearly visible nucleolus were counted (×40 objective, NA 0.70), and SGN density was calculated as cells per square millimeter. A single nucleolus was never visible in two adjacent sections (i.e., the nucleolus can be considered a point source), so this counting technique provides an estimate that needs no corrections (Guillery, 2002).

Endbulbs of Held make contact with spherical bushy cells (SBCs) and are distributed in the rostral pole of the AVCN. Endbulb identification was based on previously published criteria showing their distinct properties at the ultrastructural level (Lenn and Reese, 1966; Gentschev and Sotelo, 1973; Cant and Morest, 1979; Ryugo et al., 1996, 1997). All tissue was coded so that observers were blinded to the treatment group. Unbroken strings of 20–30 serial sections were collected from endbulbs of normal hearing cats (n = 3 cats, 20 endbulbs), deafened cats (n = 3 cats, 27 endbulbs), and deafened and stimu-
Figure 3.
lated cats (n = 5 cats, 34 endbulbs). Endbulbs were randomly selected from each animal for electron microscopic analysis. Each photomicrograph was digitized, and the perimeter of each endbulb profile and length of every postsynaptic density (PSD) were traced; these outlines were aligned and stacked in Adobe Photoshop and imported into Amira 4.0 (Mercury Systems, Carlsbad, CA). Three-dimensional reconstructions of each endbulb were made and the surface areas measured; the area measurements incorporate the curvature of the PSD.

The number of synaptic vesicles (SVs) in a 0.5-μm radius of the PSD was counted from randomly selected endbulbs of each animal by a blinded observer. To determine a 0.5-μm radius around a PSD within the endbulb, the center of a 1-μm-diameter pencil in Adobe Photoshop (Ryugo et al., 2006) was run along the PSD; mitochondria and inclusions were subtracted to yield cytoplasmic area. A three-pixel dot was placed in the lumen of every SV in the defined radius for counting purposes. By restricting the vesicle counts to the area immediately surrounding the PSD, regions of axoplasm (which lack vesicles) were eliminated and counts focused on vesicles that appeared most ready for release. If PSDs were within 0.5 μm of each other, they were considered a single structure for the purpose of determining vesicle density so that no vesicle was counted twice. Digital images of endbulb profiles were collected at ×15,000 at 328 pixels/inch and analyzed at 100% magnification. Area measurements and SV counts were made in Image J version 1.32 (NIH) and were expressed as mean ± SD.

SV counts were “corrected” according to a modification of Abercrombie’s (1946) formulation. Because synaptic vesicles appear ring-shaped in cross-section, we counted only structures that exhibited a complete ring with a clear lumen and were <80 nm in diameter. Those SVs whose luminal points were outside the ultrathin section but that were nevertheless represented by fragments inside the section have their luminal points extending through a volume of tissue equivalent to, on average, the inside diameter of the SV. SV fragments without a lumen were effectively ignored, which is why the diameter of the SV was not used. Instead, we measured the maximum luminal diameter (from the inner edge of the SV membrane on one side to the inner edge of the SV membrane on the opposite side) for a minimum of 100 SVs (range 112–311) per animal. The mean luminal diameter, M, was used in the formula \(P = A(T/T + M) \) to calculate the corrected count P, where A equals the uncorrected count and T equals the ultrathin section thickness. SV density was calculated by dividing the corrected vesicle count by the area of the 0.5-μm PSD radius within the endbulb.

RESULTS

The present results are based on data collected from three normal hearing cats, three ototoxicologically deafened cats, and five ototoxicologically deafened cats that were implanted at 8 weeks of age with chronic scala tympani electrode arrays (Table 1). The hearing status of each cat was evaluated periodically during the course of the experiment. Hearing cats exhibited ABRs in response to 20-dB peak equivalent SPL clicks, whereas deafened cats exhibited no response to clicks up to 98-dB peak equivalent SPL, consistent with previous results from the laboratory with aminoglycoside-based deafening procedures (see, e.g., Coco et al., 2007).

The histological appearance of the organ of Corti and spiral ganglia was consistent with each cat’s hearing status (determined by the presence or absence of sound-evoked activity). Hearing cats exhibited a normal organ of Corti and spiral ganglia. Inner and outer hair cells, Reissner’s membrane, the tectorial membrane, and type I and type II ganglion cells were evident all along the cochlear duct, from the apex to base (Fig. 1A,A’). In contrast, the chemically deafened cats had no hair cells present, and the organ of Corti was completely absent in the basal turn (Fig. 1B). There was also widespread spiral ganglion neuron loss that was greater in the basal and middle turns compared with the apical turn (Fig. 1B’). Deafened cats that received unilateral electrical stimulation also exhibited complete loss of hair cells throughout the cochlea and a loss of the organ of Corti in the basal turn (Fig. 1C). Substantial ganglion neuron loss was evident (Fig. 1C’), and, as in the nonstimulated deafened cochlea, the loss was variable along Rosenthal’s canal, with greater loss occurring in the base. Histological analysis demonstrated that there were no acoustic receptors in the deafened cats, but there were residual ganglion cells giving rise to fibers of the auditory nerve.

SGNs

The density of SGNs was calculated for the region of Rosenthal’s canal that lay alongside of the cochlear im-
plant electrode array. The mean ganglion cell density in normal hearing cats is 889.6 ± 240 cells/mm². In contrast, the mean cell density for deafened cats was 177 ± 101 cells/mm² and for electrically stimulated deafened cats 205.7 ± 124 cells/mm². There was no statistical difference between the latter two cohorts, but the normal hearing cats had statistically greater density values (P < 0.001, Kruskal-Wallis test).

Auditory nerve endings

In the AVCN, endbulbs of the auditory nerve present ultrastructural characteristics that make them clearly identifiable, even under pathologic conditions. Endbulbs are large, but, in ultrathin sections, tangential views often present only small portions of the structure. Nevertheless, the cytoplasm is less electron dense than other endings, and there is a distinct covering of glial lamellae. Auditory nerve endings contain clear, round SVs (approximately 45–50 nm in diameter) and exhibit paired but asymmetric membrane thickenings with the somata of spherical bushy cells (Fig. 2A–D, asterisks). In normal hearing cats, the presynaptic membrane thickening is thinner than the postsynaptic membrane thickening and is marked by an associated cluster of synaptic vesicles. The asymmetric membrane thickenings are dome-shaped, arch into the presynaptic endbulb, and represent the synaptic release sites. We focused on the postsynaptic thickening or density (PSD) because it was so much more prominent than the presynaptic thickening. Individual synapses were followed through consecutive serial sections so that individual PSDs could be reconstructed in three dimensions in computer software and rotated 90°for an en face view. In this way, individual PSDs could be seen lying on the surface of the postsynaptic membrane and their discrete nature revealed (Fig. 2E). The reconstructed, three-dimensional surface area of individual postsynaptic densities (n = 152) from 20 endbulbs of normal hearing cats averaged 0.120 ± 0.06 μm².

The endbulbs of ototoxically deafened cats exhibited distinct structural differences when viewed in an electron microscope (Fig. 3A–F). The auditory nerve endings tended to embed themselves partially in the postsynaptic cell body (white arrows in Fig. 3B,C,F). Normally, these endings reside on the surface of the SBC (Fig. 3D). There was a reduction in the number of clear round SVs, and the PSDs appeared flatter, thicker, and longer. That is, the punctate arched appearance of the PSDs was replaced by a broader curve (Fig. 3D,E) or a wavy shape (Fig. 3A–C,F). Individual PSDs (n = 139) were reconstructed through serial sections from 27 endbulbs and observed to be hypertrophied (Fig. 3G). These PSDs averaged 0.164 ± 0.20 μm².

In deafened cats that were stimulated electrically via a cochlear implant, endbulb synapses ipsilateral to the cochlear implant resembled those of normal hearing cats, except that SV density did not increase to normal levels (Fig. 4A–D). A small proportion of endings appeared sunken into the cell body, but the punctate and distinctive dome-shape of the normal PSDs returned. Glial lamellae were present around these primary endings. The PSDs (n = 319) from 34 endbulbs of five implanted cats were reconstructed through serial sections; they were essentially normal in size (0.127 ± 0.10 μm²) and spatial distribution (Fig. 4E).

A view of the reconstructed PSDs from each cohort is summarized in Figure 5. Nonparametric analysis (Kruskal-Wallis test) revealed that, on average, there was no significant difference between the size of PSDs from the auditory nerve fibers of normal hearing vs. deaf-stimulated cats, whereas those from unstimulated deafened cats were significantly larger (P < 0.05). A plot of all PSD values is provided in Figure 6. Moreover, PSD size was not correlated with duration of electrical stimulation or age of animal (P > 0.1, Pearson product-moment coefficient).

Analysis of SV density revealed a statistically significant difference between hearing cats and deaf cats with or without electrical stimulation (P < 0.001, Kruskal-Wallis test), and there was no difference in SV density between congenitally deaf cats and deaf cats with cochlear implants. The concentration of SVs within 0.5 μm of the PSD for normal hearing cats was 74.40 ± 16.6 SV/μm²; the value for ototoxically deafened cats was 48.07 ± 24.8 SV/μm², and the deafened/stimulated cats had the lowest SV density at 38.63 ± 18.3 SV/μm². The maximum diameter of SVs for all cats was 45.3–48.3 nm, and there was no statistical difference among individual cats or across cohorts (P > 0.05, Tukey-Kramer HSD). These results are illustrated by representative electron micrographs (Fig. 7).

SBCs

We measured the cell body area of SBCs of the cochlear nucleus. Because cell bodies are known to shrink as a result of deafness (West and Harrison, 1973; Larsen and Kirchoff, 1992; Saada et al., 1996), the hypertrophied...
PSDs could simply reflect their merging as a result of a smaller surface area. SBCs in the 10 kHz and higher frequency region (Bourk et al., 1981) of the anterior division of the AVCN were selected to ensure that we were sampling from cells that would most likely be stimulated by the indwelling basal cochlear electrodes. A minimum of 100 cells per cochlear nucleus was drawn using 100 oil immersion lens (total magnification of 1,250) and a drawing tube attached to a light microscope. Somatic silhouette areas were calculated in NIH Image J (Fig. 8). SBCs from normal hearing cats had a mean somatic area of 586.14 ± 87.8 μm². Those from ototoxically deaf cats averaged 494.91 ± 65.2 μm², exhibiting a 15.6% reduction. Electrical stimulation of the auditory nerve did not have a restorative effect on cell body size for ototoxically deaf cats (mean cell body size = 372.9 ± 72.9 μm²). Cell body sizes of normal hearing cats were significantly larger than those of unstimulated deaf cats (P < 0.05, ANOVA), and unstimulated deaf cats had cell bodies that were on average statistically larger than those of deaf cats that received electrical stimulation (P < 0.05). There was no statistical difference in somatic size when comparing the

Figure 5. En face view of PSD reconstructions derived from serial section electron micrographs of endbulbs. Unbroken strings of sections through individual endbulbs were photographed, digitized, aligned, stacked, and rotated in Adobe Photoshop and Amira software. The views represent the surface of the spherical bushy cell (grayish) lying beneath the endbulb. Note that the PSDs (dark) are hypertrophied in the endbulbs from deaf cats, whereas those from normal hearing and stimulated cats have PSDs of similar size and distribution. Scale bar = 0.5 μm.
ipsilateral stimulated side with the contralateral side (390.8 ± 62.9 μm², P > 0.85).

DISCUSSION

The present results add to ongoing studies of plasticity in the central auditory system in response to deafness and electrical stimulation via a cochlear implant (see, e.g., Ryugo et al., 2005; Fallon et al., 2009). These studies explore the replacement effects of afferent input to a deaf auditory system. Our results show that chronic intracochlear electrical stimulation restores the size of auditory PSDs but does not rescue SV numbers, SGN density, or SBC somatic size (Fig. 9). It should be noted that normal hearing cats, whether raised in the United States or Australia, exhibit smaller PSDs compared with those of hereditary and ototoxically deafened cats (Ryugo et al., 2005). A direct comparison is not possible, however, because the earlier study calculated PSD size from two-dimensional flattened images (Image J), whereas the current study calculated PSD size in three dimensions (Amira). Ototoxic deafness resembles hereditary deafness in causing organ of Corti destruction during development and significantly reducing the level of spontaneous and driven activity in the auditory nerve (Shepherd and Javel, 1997). The observation that electrical stimulation remediates some but not all features of the relationship between auditory nerve fibers and SBCs is consistent with the idea that the two models for congenital deafness, hereditary deaf white cats and ototoxically deafened normal cats, are qualitatively similar.

We further demonstrate that electrical stimulation in the deafened cochlea does not provide trophic support of SGNs, insofar as the SGN density of electrically stimulated cochleae exhibited no evidence of increased survival compared with the deafened, unstimulated controls. These results are consistent with previous data from our laboratory (Shepherd et al., 1994, 2005; Coco et al., 2007) but differ from the findings of other groups who have reported a modest but significant trophic influence on SGNs following chronic electrical stimulation (Hartshorn et al., 1991; Leake et al., 1991, 1999; Mitchell et al., 1997).

Under normal conditions, auditory nerve fibers exhibit spontaneous spike discharges, ranging from near zero to more than 100 spikes/second (Kiang et al., 1965; Liberman, 1978). Those fibers exhibiting lower levels of spontaneous and evoked activity have larger and flatter PSDs; in contrast, those with higher levels of activity exhibit smaller and distinctly curved PSDs (Ryugo et al., 1996). Hereditary congenital deafness in white cats eliminates most activity in auditory nerve fibers (Ryugo et al., 1998), with a resulting flattening and hypertrophy of PSDs in their large endings (Ryugo et al., 1997). The relationship between congenital deafness and abnormal synapse structure was replicated in the Shaker-2 mouse (Lee et al., 2003). In deaf white cats, the restoration of spike activity in the auditory nerve using a cochlear implant preserved normal synapse morphology in the ipsilateral endbulbs of Held (Ryugo et al., 2005).

One question is whether the hypertrophy of PSDs was merely a simple consequence of surface area shrinkage of the SBCs, insofar as it is well known that deafness causes somatic shrinkage of cells in the cochlear nucleus (Powell and Erulkar, 1962; West and Harrison, 1973; Trune, 1982; Moore and Kowalchuk, 1988; Hultcrantz et al., 1991; Moore et al., 1994; Saada et al., 1996). With shrinkage, there would be a corresponding loss of somatic surface area, and it follows that individual PSDs might simply coalesce into larger units. With replacement of auditory nerve activity via electrical stimulation of the cochlea, it has also been reported that spherical cell body size increases (Lustig et al., 1994). The resulting expansion of surface area would presumably allow PSDs to resume their normal size and shape. Our results, however, revealed that electrical stimulation of the cochlea had an effect on PSD size that is independent of SBC size and spiral ganglion cell density (Fig. 9). These data suggest that morphological plasticity of the PSDs in SBCs is not a passive reflection of available somatic surface area.

The restoration of PSD size following electrical stimulation in ototoxically deafened cats resembles that observed
in hereditary deafness (Ryugo et al., 2005; O’Neil et al., 2009). The magnitude of the restoration was smaller than that from hereditary deafness, because the hypertrophy of the PSDs was reduced with ototoxic treatment. One possibility for this more moderate reaction is that these animals have some auditory experience. During the time required to deafen the developing animals by the ototoxic drugs (a minimum of 17 days), some amount of hair cell stimulation could have occurred, because hair cell sensitivity to ototoxic drugs is inversely related to age (Shepherd and Martin, 1995). Early hearing experience could be sufficient to mute the PSD hypertrophy.

The smaller hypertrophy of PSDs in this study could also indicate that ganglion cells are undergoing some degenerative change. There is a more extensive and faster loss of SGCs with ototoxic deafness compared with that in hereditary deafness (Mair, 1973; Webster and Webster, 1981; Keithley and Feldman, 1983; Hardie and Shepherd, 1999; Leake et al., 2008). In hereditary deafness, SV density increases by nearly 50% but returns to near-normal values after electrical stimulation (O’Neil et al., 2009). This increase does not occur in ototoxic deafening. It is not unreasonable to expect the active process of up-and down-regulation of PSD proteins in the cochlear nucleus to be influenced by the relative health of the system.

In comparing data between ototoxically deafened cats and hereditary deafened cats, it is important to remember the general observation that, the longer the period of deafness, the more severe the functional (Shepherd et al., 2004) and structural (Moore et al., 1994; Sly et al., 2007) changes. If one accepts that electrical stimulation via a cochlear implant “eliminates” deafness, then the ototoxically deafened cats have a shorter duration of deafness because they begin their stimulation program at 2 months of age. In contrast, the hereditary deafened cats begin their stimulation at 3 months of age (Ryugo et al., 2005). This circumstance implies that the deaf white cats might exhibit more severe abnormalities compared with the ototoxically deafened pigmented cats. Because such is not the case at the end of the stimulation period, the cause of differences in deafness-induced abnormalities between the two model systems remains undetermined.

Plasticity in synaptic structure resulting from deafness and stimulation

The synapses of endbulbs are normally small and discrete (Ryugo et al., 1996). It has been speculated that discrete PSDs improve glutamate diffusion kinetics. Circumscribed release sites with associated receptors would facilitate the near-simultaneous binding of neurotransmitter and its rapid dispersion, thereby facilitating the rapid time course of excitatory postsynaptic currents (Matsuzaki et al., 2001; Franks et al., 2002). The morphology of endbulb synapses are optimally efficient when there is a high demand for spike activity, and their target SBCs are known for their ability to fire at high rates (Moller, 1969; Babalian et al., 2003).

The size of endbulb-associated PSDs is inversely correlated with levels of activity (Ryugo et al., 1996, 1998). In principle, synaptic strength would be affected by changes in postsynaptic receptor accumulation. Changes in excitatory synaptic transmission are accompanied by changes in AMPA receptor density (Lissin et al., 1998) and the postsynaptic sensitivity to glutamate (Turrigiano et al., 1998; O’Brien et al., 1999). Importantly, activity blockade significantly increased the postsynaptic accumulation of synaptic AMPA receptors (Wierenga et al., 2005). These observations imply a significant role for spike activity on the synaptic dynamics of auditory nerve fibers.

Functional significance of synaptic plasticity

The synaptic abnormalities of endbulbs resulting from untreated, early-onset deafness (see, e.g., Ryugo et al.,...
1997, 1998) could represent one of the substrates that impairs transmission within the central auditory pathways when cochlear implants are used. Such would be the case if cochlear implantation, when performed in older children or adults, did not restore auditory nerve synapses to their natural state; the outcome would be minimal benefit in terms of speech perception (Waltzman et al., 1991; Busby et al., 1993; Niparko et al., 2000). Evidence for a critical period has been provided in which electrical stimulation via cochlear implants in 3-month-old congenitally deaf cats resulted in the restoration of auditory nerve synapses, whereas that in 6-month-old congenitally deaf cats had no effect (O’Neil et al., 2009). The collective body of literature emphasizes the importance of the auditory nerve synapses for faithfully furnishing sound information to the central pathways. This initial stage of the system probably does

Figure 8. Drawing tube reconstructions of spherical bushy cells from the anteroventral cochlear nucleus of normal hearing, deaf, and deaf-stimulated cats. These cells were selected from the high-frequency region (>10 kHz) of the AVCN. Bushy cells from hearing cats are roughly 20% larger than those of ototoxically deafened cats and approximately 25% larger than those of deaf-stimulated cats. These data suggest that stimulation by itself does not induce cell bodies to grow to their normal size. Scale bar = 20 µm.
not underlie sound cognition but certainly allows such higher order processing.

The loss of SVs and less efficient receptor systems might reduce the ability for auditory synapses in congenitally deaf animals to transmit with high fidelity (Oleskevich and Walmsley, 2002). Synaptic failure at the SBC would have a major impact on the “timing” pathway for terrestrial mammals, compromising neural processing at the level of the superior olivary complex and higher. If synaptic “jitter” were introduced at auditory stations along the ascending pathway, then there could be an overall reduction in the synchrony of the afferent volley. The consequence of this situation might be a reduction and latency increases in EABR peaks. Consistent with this idea were conspicuous deficits in the synaptic activity in the infragranular cortical layers of auditory cortex of congenitally deaf white cats, implying that the thalamocortical volley was compromised (Kral et al., 2000).

EABRs elicited from deafened animals show marked decreases in amplitude and amplitude-level slope and increases in both threshold and latency compared with normal controls, with more marked changes evident with longer durations of deafness (Hardie and Shepherd, 1999); similar changes have also been reported clinically (Firszt et al., 2002; Thai-Van et al., 2002). Some of these functional changes may be associated with changes in response properties of spiral ganglion neurons in deafened animals (Shepherd and Javel, 1997), whereas others may be related to changes in more central auditory nuclei, such as a reduction in the number, strength, or atrophy of excitatory

Figure 9. Bar graphs comparing PSD size, SV density, spiral ganglion cell density, and spherical bushy cell (SBC) somatic size across the cohorts of normal hearing cats, ototoxically deafened cats, and deafened and stimulated cats. The letters, a, b, and c, below the graphs indicate statistical difference when the letters are different ($P < 0.05$, Kruskal-Wallis test). The plots illustrate the hypertrophy of PSDs in deaf animals and the return to normal size of the PSDs in deaf-stimulated cats. There is also a reduction in presynaptic SV density, a loss of spiral ganglion cells, and somatic shrinkage of the SBCs in deafened cats; these changes are not ameliorated by stimulation via a cochlear implant.
synapses (Kotak and Sanes, 1997; Ryugo et al., 1997; Hardie et al., 1998).

The plastic changes in the ultrastructure of the endbulb may have pertinent clinical implications, particularly associated with the application of cochlear implants. For example, normal hearing subjects are sensitive to interaural time delays (ITDs) as narrow as 10 –20 μsec (Yost, 1974). These ITD thresholds are typically an order of magnitude shorter than those of bilateral cochlear implant recipients (van Hoesel and Tyler, 2003; Laback et al., 2004), although balanced bilateral hearing is a positive factor in spatial hearing (e.g., direction, distance, movement) and is associated with an improvement in sound quality (Nobel and Gatehouse, 2004). If endbulb–SBC synapses remain abnormal after chronic electrical stimulation, a reduction in resolution in spike timing at the level of the SBC is likely to contribute to the reduced ITD sensitivity reported for bilaterally implanted subjects. The restoration of this synapse by electrical stimulation following congenital deafness (Ryugo et al., 2005) argues strongly for early implantation.

In summary, our results demonstrate that deafness, regardless of the cause, exerts profound effects on synaptic structure. Moreover, when spike activity is restored to the auditory nerve by electrical stimulation from a cochlear implant, there is a tendency for the restoration of synaptic structure, but the functional consequences of the preservation have yet to be determined. These plastic phenomena in ototoxically deafened cats appear to be muted at the auditory nerve synapse compared with that observed in genetic deafness for the deaf white cat (Ryugo et al., 2005) but nevertheless establish a generality of effects for these two models of congenital deafness.

ACKNOWLEDGMENTS

We thank Mr. Tan Pongstaphone for his technical assistance with electron microscopy; Ms. Lauren Donley for animal maintenance; Dr. Jin Xu and Ms. Helen Feng for electrode manufacture; Ms. Maria Clark for histology; Ms. Elisa Borg for animal husbandry; and Mr. Rodney Millard, Dr. Peter Seligman, and Dr. John Heasman for expert engineering assistance and advice.

LITERATURE CITED

