Endbulbs of Held and Spherical Bushy Cells in Cats: Morphological Correlates With Physiological Properties

SEIHIRO SENTO and DAVID E. RYUGO
Department of Anatomy and Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 (S.S., D.K.R.); Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114 (S.S., D.K.R.); Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (D.K.R.)

ABSTRACT
Single auditory nerve fibers of type I spiral ganglion cells in cats were electrophysiologically characterized by recording with micropipettes inserted into the axon and then labeled by intracellular injections of horseradish peroxidase (HRP) through the same pipettes. This method for staining and studying single neurons allowed us to describe structure-function relationships for labeled endbulbs of Held and the somata of their presynaptic spherical bushy cells. The silhouette areas of terminal endbulbs and the corresponding somata of spherical bushy cells were determined by planimetry from drawings made with a light microscope and drawing tubes. On the presynaptic side, endbulb area is related to fiber characteristic frequency (CF), the frequency to which a fiber is most sensitive) such that the largest endbulbs arise from fibers having CFs between 1 and 4 kHz; smaller endbulbs can arise from fibers of any CF. Endbulb area is not correlated with fiber spontaneous discharge rate (SR). Dividing the endbulb's silhouette area by its silhouette perimeter, however, yields a "form factor" that is a reliable indicator of fiber SR. Endbulbs from fibers of low-medium SR (<18 spikes/second) have form factor values less than 0.52, whereas endbulbs of high SR fibers (>18 spikes/second) have values greater than 0.52. This form factor should therefore be predictive of SR groupings in auditory fibers for which physiological data are not available.

On the postsynaptic side, the somata of spherical bushy cells receiving endbulbs from low-medium SR fibers are on average smaller than those receiving endbulbs from high SR fibers. In contrast, the nuclei of the spherical bushy cells are the same size regardless of presynaptic fiber SR. Some of the effects of low-medium SR fibers on their postsynaptic targets, when compared to those of high SR fibers, appear to be mimicked by effects of experimentally induced deprivation.

Key words: auditory nerve, cochlear nucleus, hearing, horseradish peroxi-
dase, primary afferents, spontaneous activity

The auditory nerve of mammals contains the axons of two fundamentally distinct populations of ganglion cells (Ryugo et al., '86; Brown et al., '87). Ninety to 95% of the fibers in the nerve are myelinated (Arnesen and Osen, '78) and arise from type I spiral ganglion neurons of the cochlea (Spoendlin, '73). The peripheral processes of these ganglion cells innervate inner hair cells (Kiang et al., '83), and it is these primary neurons from which most information is available (e.g., Kiang, '84). The type I neurons, however, are not a homogeneous population as they can differ across a wide variety of morphological and physiological characteristics.

© 1989 ALAN R. LISS, INC.
S. Sento and D.K. Ryugo

petite electrodes were then placed into the nerve under direct visual control.

Upon contacting a unit, a threshold tuning curve and a 15- or 20-second sample of spontaneous activity were obtained before and after the injection of HRP for each unit. The tuning curve was used to determine CF, and SR was defined as spontaneous activity (spikes per second) in the absence of sound controlled by the experimenter. The ambient acoustic noise within the recording chamber was below the human threshold for hearing even with the ventilation system in operation (Ver et al., 1975). Individual fibers were labeled by iontophoresis with a 1% solution of HRP (Sigma type VI) in 0.05 M Tris buffer (pH 7.3) containing 0.15 M KCI through micropipettes bevelled to a final impedance of 40-60 MΩ. Approximately 24 hours after the HRP injection, the cats was given a lethal dose of barbiturate, artifi- cially respirated, and perfused intracardially with buffered fixatives. The perfusion solutions consisted of 50 ml of ison- tonic saline (37°C) with 0.1% NaNO, followed immediately by 500 ml of fixative (2% solution containing 0.5% paraformalde- hyde, 1.0% glutaraldehyde, and 0.006% CaCl2 in 0.12 M phosphate buffer (pH 7.4), and then 1.5 liters of a second fixative (3% solution containing 1.25% paraformaldehyde, 2.5% glutaraldehyde, and 0.008% CaCl2 in the same buffer solu- tion). Following perfusion and decapsulation, the head was immersed in the secondary fixative (4°C) with enough bone and tissue removed to expose the auditory nerve and cochlear nuclei to the fixative. After 12-24 hours, the brain was removed from the skull and the nerve and nuclei were iso- lated in a single tissue block. Each block was embedded in gelatin-albumin (Frank et al., 1980), sectioned at 40-60-µm thickness with a Vibratome, and kept in serial order. The sections were stained with the following reagents: 4% TMB buffer (pH 7.6) and then incubated for 1 hour in a solution of 0.05% 3,3'-diaminoben- zidine and 0.01% H2O2 in Tris buffer (pH 7.3), and then incubated for 1 hour in a solution of 0.05% 3,3'-diaminoben- zidine and 0.01% H2O2 in Tris buffer (pH 7.3). Sections were washed again and then mounted on glass microscope slides and counterstained with cresyl violet, or postfixed with 0.1% OsO4, for 15 minutes, stained en bloc with 1% uranyl acetate (overnight), dehydrated, infiltrated, and embedded in Epon. Thin sections were cut between two sheets (each 25 × 75 mm) of Aclar (Allied Engineered Plastics, Potomac, PA). Reconstruction

Only fibers that were well characterized electrophysiologi- rally and recovered with high confidence were used in this analysis. These fibers appeared dark brown or black against the pale-staining tissue of the cochlear nucleus; furthermore, they exhibited distinct swellings at the tips of every terminal branch in the anterosuperior cochlear nucleus, thereby providing light microscopic evidence that the as- cending branch was completely stained. At the rostral ter- minus of the ascending branch is typically found a large, axosomatic ending called the embbeded of Hald (Ramón y Cajal, 1909; Ryugo and Fekete, 1982; Fekete et al., 1984). Our results are consistent with the observations of Monaco and his associates (1986) that two-thirds of the axons of the cochlear nucleus overlap when they were reduced to a planar sil-
Fig. 1. Drawing tube reconstructions of three pairs of endbulbs of Held (A-C). Each pair is from opposite cochlear meatal of the same ear, representing roughly similar characteristic frequency (CF) ranges but different spontaneous discharge rate (SDR) groups. Endbulbs in column a are from high SDR fibers and those in column b are from low-medium SDR fibers. Endbulbs in column c have a more "tCOPY" appearance. See Table 1 for quantitative data on these endbulbs. Scale bar equals 30 μm.
Dendrbula. In such instances, the overlapping parts were optically separated by using different focal planes and drawn. These drawings were photographically enlarged to a final magnification of x3,000; areas and perimeters were determined by computerized planimetry for terminal dendrbula. The proportion, area divided by perimeter, produced a "form factor" (the mm unit was dropped) that we used to represent geometric complexity. The cell bodies and nuclei of the postgyratory spherical bursa were similarly measured through the phase of the microscope. Drawings were "decoded" when all measurements were completed.

**Data analysis**

The measurements were analyzed with respect to fiber CF and SR. Fibers were assigned to SR groups according to the criteria of Liberman. "78: Low SR < 0.5 s; medium SR = 0.5-18 s; and high SR = 18 s. For purposes of statistical comparisons to high SR fibers, low SR fibers and medium SR fibers have been grouped together because they share many electrophysiological and anatomical characteristics. Otherwise, data points for individual fibers are represented by separate symbols in the figures according to their SR. The cytoarchitectonic regions of the cochlear nucleus are used as previously defined (see Fig. 2 of Fekete et al., '84).

**TABLE 1. Physiological and Morphological Data for Dendrbula Shown in Figures 1**

<table>
<thead>
<tr>
<th>Type</th>
<th>CF (kHz)</th>
<th>SR (s)</th>
<th>Endkelbula area (mm²)</th>
<th>Form factor</th>
<th>Some area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.2</td>
<td>65.7</td>
<td>199.1</td>
<td>0.546</td>
<td>437.0</td>
</tr>
<tr>
<td>B</td>
<td>0.4</td>
<td>37.2</td>
<td>238.6</td>
<td>0.594</td>
<td>717.3</td>
</tr>
<tr>
<td>C</td>
<td>0.6</td>
<td>25.3</td>
<td>392.9</td>
<td>0.524</td>
<td>661.2</td>
</tr>
</tbody>
</table>

**RESULTS**

The present data are based on 46 physiologically characterized auditory nerve fibers in 37 cochlear nuclei. Seven fibers were low SR, nine were medium SR, and 30 were high SR; the CF range for all fibers was 0.2-38.2 kHz. Each fiber gave rise to a single terminal dendrbula of Held, which was operationally defined as a complex, axonometric terminal swelling at the tip of the ascending branch, composed of 14 or more components (lobules and swellings; see also Rouiller et al., '86). As defined, terminal dendrbula were easily recognizable and distributed within the anterior division of the AVCN.

**Endkelbula of Held**

Endkelbula exhibit a wide variety in size and shape. In order to reduce individual variation, pairs of injected fibers were selected so that by using both auditory nerves, they were of similar CF but different SR. Each fiber of one pair was injected in separate ears, and one was typically yielded one to three pairs. Examples of some dendrbula stained by this method are illustrated in Figure 1, and a
summary of their physiological and morphological measurements is listed in Table 1. Each endbulb consists of a highly branched, cup-shaped arborization that partially encloses the soma of a spherical basally cell. The parent trunk divides into several thick, knobly branches that in turn generate a number of successively finer branches. The branches of the arborization display irregular varicosities and lobes, many of which are linked together by thin, filamentous processes. Most elements of the endbulb appear in close apposition to the surface of the postsynaptic cell body and form part of the axosomatic embrace. In addition, collateral processes of various lengths and branching patterns are frequently present that distribute en passant and terminal swellings away from the cell body but still to nearby regions (usually within 50 µm). When the swellings are found in neuropil, it is not possible to determine whether they are part of the endbulb contacting distal parts of the same cell (Fig. 1Aa, Ab, Ib, Ib, Cb). Sometimes, however, it is clear that they contact a different cell (Fig. 1Ba). The presence or absence, length, or branching pattern of these collaterals does not appear to be related to the fiber's physiological response properties.

Endbulb size. The silhouette area of individual endbulbs was used to represent size. Fiber CF is related to endbulb size (Fig. 2A). As fiber CF increases from 0.2 to approximately 4 kHz, so does the area of the endbulb (n = -34, correlation coefficient = 0.48, P < .01). As CF continues to increase above 4 kHz, endbulb area decreases (n = -12, correlation coefficient = 0.66, P < .02). The result is that the largest endbulbs originate from fibers having CF's between 1 and 4 kHz.

The area of the endbulb does not appear to be dramatically related to fiber SR (Fig. 2B). On average (mean ± 1 S.E.M.), there are not statistically significant size differences for endbulbs of the two SR groups; endbulb area for high SR fibers is 271.6 ± 20.1 µm², whereas endbulb area for low-medium SR fibers is 230.5 ± 25.1 µm² (P < .10).

These data are not affected by the size variations due to fiber CF (Fig. 2A). For a given CF range, endbulbs of low-medium SR fibers are of equal size compared to those of high SR fibers. Moreover, there is no difference in the areas of endbulbs between low SR fibers and medium SR fibers.

The form factor. The similarity in average size for endbulbs of high SR fibers vs. low-medium SR fibers was unexpected, especially in light of their differences in appearance. That is, the endbulbs of high SR fibers (column a of Fig. 1) seem to have larger but fewer swellings and lobules compared to endbulbs of low-medium SR fibers (column b of Fig. 1). Our subjective impression was that low-medium SR fibers gave rise to lessy, delicate structures, yielding endbulbs that appear to have relatively greater complexity in form. A reliable distinction on the basis of such an impression, however, was often rather difficult to make (Fig. 3).

We used the ratio silhouette area divided by silhouette perimeter to provide an objective value (called the form factor) and having no units for representing each endbulb. This value separated endbulbs into two almost nonoverlapping populations according to SR, regardless of fiber CF or endbulb size (Fig. 4A). The form factor values for endbulbs of high SR fibers (range, 0.46–0.88) were larger than those for endbulbs of low-medium SR fibers (range, 0.34–0.66), and separated endbulbs that appeared morphologically similar (e.g., Fig. 3). There was no systematic relationship between form factor and fiber CF.

Two endbulbs proved to be exceptions to the general rule whereby form factor values could be applied to identify fiber SR. Each endbulb arose from a different cat, yet other endbulbs in these cats followed the rule. It was of interest to note, however, that each exceptional endbulb originated from fibers having "extreme" physiological properties. One endbulb arose from a fiber having the highest SR in our population (107.5 s/a) and the other arose from a fiber having the highest CF (28.16 kHz).
Although the form factor clearly separated endbulbs from fibers having SR above and below 18 spikes/s, the form factor was not strictly proportional to the SR value across the whole SR range (Fig. 4B). The form factor was more or less linearly related to SR from 0 to 40 spikes/s, but not at higher SR values.

**Spherical bushy cells**

For the 40 terminal endbulbs of Held in this study, there were 40 cell bodies that could be distinguished within the axosomatic embrace. In those instances where the postsynaptic cell body was not evident, it was because of insufficient counterstaining or because the cell body was separated from the endbulb because of sectioning. Twenty cochlear nuclei were counterstained with cresyl violet and 25 postsynaptic somata were identified as spherical bushy cells on the basis of a prominent perinuclear cap of Nissl material (criterion of Cant and Merzen, ’79) plus a cytoplasmic “necklace” of Nissl bodies surrounding the nucleus (criterion of Osen, ’80). In ten Epon-embedded nuclei, we could observe the outlines of the cell body, nucleus, and nucleolus of 15 additional postsynaptic neurons but could not make cell type identification on the basis of Nissl characteristics. From previous work, however, we have determined that all such cells contacted by labeled endbulbs were indeed spherical bushy cells when examined in the electron microscope (Ryugo and Bekts, [1984](#1984)).

---

**Fig. 4.** Scatter plots illustrating the distribution of form factor values (area divided by perimeter, units dropped) of the terminal endbulb with respect to fiber CF (A) and fiber SR (B). The value, 0.52, almost always separates endbulbs according to SR grading, irrespective of fiber CF. Symbol: (●) high SR fibers; (△) medium SR fibers; (☆) low SR fibers.

**Fig. 5.** Scatter plots illustrating the distribution of cell body allometric area with respect to presynaptic fiber CF (A) and SR (B). The somata of spherical bushy cells receiving endbulbs from low-medium fiber SR fibers are generally smaller than those receiving endbulbs from high SR fibers. Symbol: (●) high SR fibers; (△) medium SR fibers; (☆) low SR fibers.
fibers having CFs below 4 kHz, the higher the CF, the larger the silhouette area (n = 34, correlation coefficient = 0.34, P = .06). As fiber CF increases above 4 kHz, however, somatic silhouette area decreases (n = 6, correlation coefficient = −0.79, P = .01).

The scatter plots illustrate the differences in cell body size between cells postysaptic to high SR fibers and those postysaptic to low-medium SR fibers (Fig. 5B). On average, somatic silhouette area of spherical bushy cells postysaptic to high SR fibers is 719.38 ± 38.2 mm² (n = 26) and that of cells postysaptic to low-medium SR fibers is 522.1 ± 33.4 mm² (n = 14). The difference is statistically significant (P < .01), but since somatic size is also correlated with presynaptic fiber CF, there is considerable overlap in size distribution (Fig. 5B). Unlike the size distribution of the presynaptic endbulbs (Fig. 5A), at any given CF value, somatic size for cells postysaptic to low-medium SR fibers is clearly smaller than for those postysaptic to high SR fibers (Fig. 5A). This relationship between the two fiber groups (CF < 4 kHz) is also revealed by similarities in the slopes of their respective regression lines (0.29 for high SR fibers and 0.44 for low-medium SR fibers; SAS, proc. GLM, F = 0.00) and differences in the Y-intercept (612.3 for high SR fibers and 390.6 for low-medium SR fibers; F = 12.21, P = .002).

**Nucleus size.** The area of the nucleus for each spherical bushy cell was taken at the focal plane of the nucleus. In contrast to somatic size, nucleus size is not correlated with presynaptic fiber CF (Fig. 6A) or fiber SR (Fig. 6B). Average silhouette area of the nucleus is 133.6 ± 9.8 mm² for spherical cells postysaptic to high SR fibers and 143.5 ± 8.9 mm² for cells postysaptic to medium-low SR fibers (P = .20).

**Endbulbs and spherical bushy cells.** Since the silhouette area of endbulb and postysaptic cell bodies covered with respect to fiber CF, it is not surprising that they are correlated to each other (n = 31, corre-
Fig. 8. Scatter plot illustrating the similarity in form factor values for end bulbs converging onto the same spherical bushy cell. For a larger sample size, our predictions that low-membrane SR fibers will have end bulbs whose form factor values place them in the lower left quadrant, whereas high SR fibers will have end bulbs whose form factor values place them in the upper right quadrant.

The biological significance of such a "line-to-one" relationship between receptor cell and brain cell is of some interest to issues of stimulus coding. In the retina, for example, foveal cones have a direct connection to ganglion cells by way of a dedicated, midget bipolar cells. Each midget bipolar cell contacts a single cone pedicle and carries the activity to a single ganglion cell (Pohl, '41; Dowling, '67). This "private" pathway from receptor to ganglion cell is presumably an important specialization of the fovea for achieving high visual acuity, since convergent pathways from receptor to ganglion cells in the peripheral retina are known to degrade visual acuity. In the case of the auditory system, the dedicated projection from hair cell through ganglion cell to a single auditory nerve cell may also be related to some aspect of acoustical acuity. For example, this structural substrate allows for the faithful transfer of neural discharges through the cochlear nucleus to the auditory cortex with a min- system with a minimum of temporal "jitter." Specifically, it seems that temporal cues of the sound stimulus are main- tained in this context. It is generally accepted that binaural time cues are important in localizing a sound source in space, especially when the sound contains low frequencies (e.g., Woodworth and Schlosberg, '38). Consequently, the relationship between inner hair cell, auditory nerve fiber, end bulb, and spherical bushy cell may reflect a specializa- tion for low-frequency sounds. Low-frequency tones elicit phase-locked responses in auditory nerve fibers of all CFs (Rose et al., '67; Kiang and Moxon, '74), and such responses may be one way in which to code the time of occurrence of a stimulus (e.g., Konishi, '66). The auditory system appar- ently uses this code for determining time differences related to the time of arrival at the separate ears for a lateralized sound source. Additional neural circuits then presumably convert the time code into a place code necessary for localiz- ing sounds of low-frequency spectra in space (Knoedel et al., '87). Our descriptions of the pathway from inner hair cell to spherical bushy cell are consistent with maintaining a precise temporal representation of binaural, low-frequency sound spectra for the central processor.
ENDBULBS AND SPHERICAL CELLS

Morphological correlates of CF

The present study revealed a relationship between the sizes of terminal endbulbs of Held and postsynaptic spherical basilar cells when fiber CF is below 4 kHz. That is, the largest endbulbs and bushy cells are associated with fibers having CFs between roughly 1 and 4 kHz. This observation confirms and extends a previous report that included both terminal and collateral endbulbs but not postsynaptic cells (Rouiller et al., '86). Although the size data are complicated by SR variations, the size discontinuity at approximately 4 kHz is, nevertheless, consistent with the separation of some physiological properties according to frequency. For instance, saturation rate (Lieberman, '78) and phase-locking (Rensi et al., '82; Rose et al., '87; Lavine, '77) differ for units across the 4-kHz reference point, but neither of these features appears related to anything as obvious as the cat's hearing sensitivity as revealed by a behavioral audiogram (Hoffman and Heffner, '85). In any case, there is no single parameter that determines somatic size, although it has been proposed that cell body size is related to the extent of the axonal arborization and diameter of the axon (Ffrench y Cajal, '09), the size of the target tissue (Voyvodic, '87), and the neuron's threshold and relative excitability (Henneman et al., '65).

Morphological correlates of SR

Although size differences (silhouette area) between endbulbs of fibers from different SR groups were not observed in our admittedly small sample (see also Ryugo and Rouiller, '88), endbulbs are clearly separated according to SR by their form factor (area/perimeter) values. Because endbulbs are elaborate three-dimensional structures, details regarding their orientation within the tissue section, darkness of staining, and the extent to which different parts superimpose in planar projection could affect the results of the method. In our SR, these variables were diminished, however, since orientation appeared random, light-staining endbulbs were discarded from the sample, and all endbulbs were sectioned with the light microscope and drawn so that planar overlap was minimized. Furthermore, analysis was performed "blind" thereby reducing experimenter bias. These considerations and precautions helped to demonstrate that the form factor is a powerful means of predicting fiber SR group, a feature that should be useful in studying labeled endbulbs and auditory nerve fibers whose physiological characterization of SR is not available. Typically, the form factor value for endbulbs of fibers having SR < 18 s/e is less than 0.52, whereas that for fibers having SR > 18 s/e is greater than 0.52.

The smaller values imply greater complexity in endbulb shape. The endbulbs of low-medium SR fibers have more but smaller elements when compared to those of high SR fibers; in this way, the endbulb mirrors the features of the ascending branch (Rouiller et al., '86). A obvious question concerns the functional significance of these SR-related differences in endbulb morphology. One idea is that the structural features of endbulbs represent a consequence of general fiber activity. Fibers of the separate SR groups differ in their thresholds to sound and their maximal driven rate (Lieberman, '78). Moreover, the sharper tip of the tuning curves of low-medium SR fibers reveals narrower receptive fields. Utilizing a two-dimensional SR th" should have a lower overall level of activity than high SR fibers in a normal acoustic environment. If such is the case, then the larger components of endbulbs of high SR fibers may be needed to house the greater amount of cellular machinery (e.g., mitochondria, smooth endoplasmic reticulum, vesicles) adjacent to synaptic active zones, or they may reflect activity-related swelling of membranes reported in other neural and secretory systems (Heusser and Reese, '70; Boyne et al., '76; Burow and Satt, '75).

Interactions between endbulbs and spherical cells

Our data now permit us to address several issues of interest because pre- and postsynaptic elements have been identified and because we have specific information about the activity of the presynaptic neurons. This situation provides us with an excellent opportunity to consider interneuronal phenomena associated with an identified set of central axo- somatic synapses. In this context, we wish to discuss our observations with respect to the possible convergence by endbulbs arising from fibers of different SR groupings, because our data argue against such a possibility. Recall that the somata of spherical basilar cells postsynaptic to endbulbs of low-medium SR fibers are smaller than those postsynaptic to endbulbs of high SR fibers, whereas the nuclei of these spherical basilar cells are relatively uniform in size. In a way, this phenomenon resembles a condition of natural deprivation since it is mimicked by the results of experimental deprivation on somatic and nuclear sizes in several other systems (e.g., Wiesel and Hubel, '68; Benson et al., '84; Moore, '83). The implication is that the level of presynaptic activity determines the size of the postsynaptic cell. A less active neuron (receiving an endbulb from a low SR fiber or being subject to sensory deprivation) would have a smaller cell body than a more active neuron. As a consequence, there should be a segregation of endbulbs onto spherical cells according to fiber SR. On the other hand, the basic concept of convergence of fibers from different SR onto the same cell has not been affected. Convergently, there is a general convergence onto the same spherical cell, than all such spherical cells should exhibit high SR (and similar general levels of activity) because of an additive effect of the inputs and they should all have cell bodies of similar size. Since this situation is not the case, our indirect data support the SR segregation hypothesis with the proviso that activity levels are correlated to cell body size. A direct test of this segregation hypothesis would be to record from, inject, and label two auditory nerve fibers connected to the same inner hair cell and having endbulbs that converge onto the same spherical cell. Since the probability of success for such a technical feat is extremely low, an alternative approach is to apply the form factor analysis to endbulbs conveying onto the same spherical cell. One method for testing converging endbulbs utilizes large extracellular HRP injections in the auditory nerve. In this way, many fibers are stained, thereby optimizing the chance to test the forms for visualizing the actual endbulbs. To date, we have four pairs of converging endbulbs whose form factor values are illustrated in Figure 6. The form factor values (range, 0.68-0.85) placed these endbulbs in the high SR group. Moreover, pairs of endbulbs exhibited nearly identical form factor values (range of ratio of FF, small divided by FF, (large), 0.87-0.89). Despite the small sample size, this preliminary evidence also argues for a segregation of endbulb input to spherical basilar cells analogous to fiber SR group.

ACKNOWLEDGMENTS

The authors gratefully thank M.F. Bourgeois, L.W. Dodds, and D.A. Learson for help with surgery and M.L.